Extensions of Multilinear Operators and Banach Space Properties
نویسنده
چکیده
A new characterization of the Dunford-Pettis property in terms of the extensions of multilinear operators to the biduals is obtained. For the first time, multilinear characterizations of the reciprocal Dunford-Pettis property and Pe lczyński’s property (V) are also found. Polynomial and holomorphic versions of these properties are given as well.
منابع مشابه
Some properties of b-weakly compact operators on Banach lattices
In this paper we give some necessary and sufficient conditions for which each Banach lattice is space and we study some properties of b-weakly compact operators from a Banach lattice into a Banach space . We show that every weakly compact operator from a Banach lattice into a Banach space is b-weakly compact and give a counterexample which shows that the inverse is not true but we prove ...
متن کاملOn the Multilinear Extensions of the Concept of Absolutely Summing Operators
The core of the theory of absolutely summing operators lie in the ideas of A. Grothendieck in the 1950s. Further work (after a decade) of A. Pietsch [19] and Lindenstrauss and Pe l czyński [9] clarified Grothendiecks insights and nowadays the ideal of absolutely summing operators is a central topic of investigation. For details on absolutely summing operators we refer to the book by Diestel-Jar...
متن کاملExtrapolation of Weighted Norm Inequalities for Multivariable Operators and Applications
Two versions of Rubio de Francia’s extrapolation theorem for multivariable operators of functions are obtained. One version assumes an initial estimate with different weights in each space and implies boundedness on all products of Lebesgue spaces. Another version assumes an initial estimate with the same weight but yields boundedness on a product of Lebesgue spaces whose indices lie on a line....
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملWeak Banach-Saks property in the space of compact operators
For suitable Banach spaces $X$ and $Y$ with Schauder decompositions and a suitable closed subspace $mathcal{M}$ of some compact operator space from $X$ to $Y$, it is shown that the strong Banach-Saks-ness of all evaluation operators on ${mathcal M}$ is a sufficient condition for the weak Banach-Saks property of ${mathcal M}$, where for each $xin X$ and $y^*in Y^*$, the evaluation op...
متن کامل